recommandeur hashtag image Cours pratiques - Deep learning

Classification d’images multi labels/classes

Pour ce nouveau cours, je vous propose de revenir sur de la classification d’image. Contrairement à mon cours sur la classification d’image simple, celui-ci sera légèrement différent en utilisant de la classification d’une multitude de label pour une même image donnée.

Le but est de créer un système permettant de proposer des hashtags en fonction d’une image donnée en entrée. Nous resterons sur nos outils habituels, à savoir Tensforflow en backend et Keras pour l’API de haut niveau, nous facilitant la mise en place d’un réseau de neurones, qui utilisera de la convolution pour cette fois-ci.

Comme d’habitude, le code source entièrement documenté est sur mon Github, libre à vous de venir pour me faire part d’éventuels correctifs et optimisation.

C’est parti ! 😉

ATTENTION : On va commencer à travailler sur des dataset assez conséquent en termes de taille, comparé aux autres tutoriels. Ce cours a pour principal but d’expliquer des méthodes, un cheminement, ainsi que des astuces pour constituer un projet en data science, et non pas d’avoir des modèles ultra performants, sinon je serais sur kaggle et non pas sur mon site perso. Travaillant sur un ordinateur portable dépourvue de carte graphique, je ne peux malheureusement pas entraîner de modèle performant.

resultat prediction
Résultat d’une prédiction de hashtag, pour une image donnée

Pré-requis