installation cudnn cuda Cours pratiques - Deep learning

Configuration des dépendances pour utiliser le GPU (CUDA, cuDNN)

Le CPU, c’est bien. Le GPU, c’est mieux !

Nous avons installé tout ce qu’il nous faut pour lancer des entraînements de réseaux de neurones. Cependant, si on lance un entrainement à ce stade-là, nous allons taper exclusivement sur le CPU. Il serait dommage de ne profiter de l’accélération de calculs offert par notre carte graphique (et surtout au prix ou elles sont actuellement, on remercie NVIDIA hein 😉)

Nous allons devoir installer 2 outils nécessaires :

  • CUDA : C’est une technologie propriétaire de NVIDIA permettant d’effectuer du traitement parallèle via leur carte graphique, permettant un bien meilleur rendement.
  • cuDNN : C’est la librairie des primitives de NVIDIA concernant les réseaux de neurones. Elle va permettre d’accélérer nos traitements , qu’ils concernant les routines standard comme la backpropagation , les fonctions d’activations etc. Il fait partie du SDK de deep learning, et peut s’utiliser avec différents backend (Caffe, Caffe2, Chainer, Keras, Matlab, MxNet, Tensorflow et Pytorch).

Sur beaucoup de site, les gens renseigne que pour installer ces deux dépendances nécessaires, il suffit de les installer à la main depuis le site NVIDIA. Cuda s’installe facilement, mais pour cuDNN vous aller devoir vous créer un compte développeur et drag&drop leur fichier zip au bon endroit. Cette méthode à fonctionné pour mon premier laptop, mais pas le second, surement un soucis de version entre les deux versions. Bref, une installation pas des plus rapide et fonctionnel.

 

Installation

Du coup je vous propose de simplifier tout cela, en installant ces deux librairies directement via Anaconda. Ouvrez votre environnement souhaité, et taper les lignes suivantes :

  • conda install -c anaconda cudatoolkit
  • conda install -c anaconda cudnn

 

Et voilà. Simple, basique.😎

installation environnement python anaconda Cours pratiques - Deep learning

Installation de l’environnement Python

Présentation d’Anaconda

Anaconda est un gestionnaire de librairie, de la même façon qu’est NPM pour le web, Nugget pour C# ou encore apt-get pour linux. Il va nous permettre de créer facilement des environnements virtuels séparé selon nos utilisation. Ainsi, vous allez pouvoir installer, mettre à jour et supprimer via de simples lignes de commandes les bibliothèque nécessaire pour entraîner nos réseaux de neurones.

 

Installation d’Anaconda

Récupérer la dernière version sur le site Anaconda , et suivez les instructions d’installation.

 

Créer votre premier environnement virtuel

Lancer Anaconda Prompt via la recherche windows. C’est un cmd réservé pour Anaconda.

  • Conda create -n nonDeMonEnvironnement python=3.6

La spécialisation de version de python est optionnelle, mais ayant eu quelques soucis avec la 3.7, je vous conseille de rester sur la 3.6.

 

Activer votre environnement

Pour le moment vous êtes sur l’environnement de base. Pour switch, utilisez la commande :

  • Conda activate nonDeMonEnvironnement

 

Bibliothèque indispensable

Comme tout bon data scientist, vous allez avoir besoin d’un bagage minimal suivant à installer :
Numpy, Scikit-learn, Matplotlib, Pandas, Pilllow, h5py et bien d’autres.

 

Commandes utiles

Installer une bibliothèque :

  • Conda install nomDeLaBiblio

Lister l’ensemble des biblio installé : 

  • Conda list

Lister les environnements : 

  • Conda info –envs