On souhaite avoir un réseau qui puisse effectuer des prédictions sur de nouvelles données. Selon la façon dont est entrainé le model, on peut se heurter à 2 problèmes :
Sur apprentissage :
Cela représente un modèle qui a appris par cœur ses données d’entrainement, qui fonctionne donc bien sur le jeu d’entrainement mais pas de validation. Il effectue alors de mauvaise prédiction sur de nouvelles, car elles ne sont pas exactement les mêmes que celle du jeu d’entrainement. Pour y remédier, il faut améliorer la flexibilité du modèle, et donc jouer sur des concept de régularisation par exemple, ou encore d’early stopping.
Sous apprentissage :
Ce cas-ci représente un modèle qui n’arrive pas à déduire des informations du jeu de données. Il n’apprend donc pas assez et réalise de mauvaise prédiction sur le jeu d’entrainement. Il faut donc complexifier le réseau, car il ne taille pas bien par rapport aux types de données d’entrées. En effet, il n’arrive pas à capter la relation entre les données d’entrées et leur label.
Dans le cas où la précision du réseau n’est ni bonne sur le jeu d’entrainement, ni sur celui de validation, c’est que le réseau n’a pas eu assez de temps pour apprendre des données. Il faut donc augmenter le nombre d’itération, ou augmenter la taille du jeu de donnée.
On souhaite donc trouver un minimum global pour notre fonction de coût, tout en évitant les éventuelles vallées et minimum locaux qui nous empêcherait de converger vers la solution la plus optimisé pour notre réseau de neurones. La backpropagation se résume en une approche pour partager la contribution des erreurs propulsé pour chaque neurone de chaque couche.
Cette retropropagation du gradient va se faire via l’alternation successives entre deux phases :
Phase avant :
C’est la phase de prédiction. On envoi à notre réseau une donnée et il va essayer d’en prédire la classe de sortie. Il va avoir un échange d’informations, de valeurs et de sommes, entre chaque neurones et chaque couche. Les données transitent de la couche d’entrée vers la couche de sortie.
Phase arrière :
C’est la phase d’apprentissage. À la suite du passage d’une donnée au sein de notre réseau, nous allons avoir un résultat concernant la prédiction. C’est pour cela que les premiers entraînements sont souvent erronés, car les poids et biais du réseau sont initialisé de façon aléatoire, et vont être mis à jour au fil des entraînements via ce procédé.
Le réseau va pouvoir via ces différents types de couches superposés, faire des prédictions, à partir d’une entrée. C’est durant l’entrainement qu’il va apprendre, se tromper, et notamment s’auto ajuster via l’étape de la rétro-propagation du gradient (backpropagation). Cet algorithme de descente du gradient va permettre de minimiser la fonction de coût, appelé aussi fonction d’objectif ou encore de perte. Celle-ci conserve donc cette notion de biologie en s’inspirant de la rétropropagation neuronale. Le but de cet algorithme est de chercher à résoudre la fonction suivante : Ax = B, ou :
A est est une matrice d’entrée
x est un ensemble de variable contenu dans un tenseur qui représente l’ensemble des poids du réseau de neurone
B est un vecteur de sortie des labels
Mais que-ce qu’un tenseur ?
Un tenseur est une unité mathématique qui peut avoir un certain degrés :
Ordre 0 : c’est un produit scalaire
Ordre 1 : c’est un vecteur
Ordre 2 : c’est une matrice
Ordre 3 : c’est un empilement de matrice, une sorte de matrice 3D. C’est cela que l’on envoie dans notre réseau de neurone
Cette fonction de perte est une fonction mathématique. Il en existe plusieurs types pour des utilisations bien précises. En effet, selon le type de problème que l’on cherche à résoudre, on aura une sortie différente, et donc une fonction de coût bien précise concernant notre problème. Dans certains cas, on souhaite avoir un résultat en sortie compris entre (0, 1), ou (-1,1), ou encore comme dans notre cas, un vecteur [ (0,1), (0,1)…] correspondant à plusieurs probabilités. Elle représente la somme de l’ensemble des erreurs de l’ensemble du réseau, soit l’écart entre la prédiction effectuée par notre réseau, par rapport à l’étiquette réelle de la donnée d’entrée. On doit chercher à la minimiser, et c’est via l’algorithme de la descente du gradient que l’on va pouvoir le faire. On va pouvoir calculer la contribution de l’erreur de chacun des poids synaptique du réseau, couche après couche. Cela va nous permettre d’actualiser les poids et biais du réseau, et donc d’effectuer de meilleures prédictions au fur et à mesure des itérations, lors de l’entrainement du modèle. Ce biais est une valeur scalaire ajouté en entrée, pour assurer que quelques neurones soit actif, quelque soit la force du signal d’entrée. Ces biais seront modifiés comme les poids au cours de l’entrainement
Le gradient quant à lui, est la dérivé en un point de la courbe mathématique qui régit les données de notre modèle. Celui-ci est donc le coefficient directeur de cette tangente. Il va nous permettre de connaître la tendance de la fonction en un point donné. Cette descente peut s’effectuer soit de manière globale (batch gradient), soit par des lots (mini batch gradient), soit de façon unitaire (stochastic gradient). La première consiste à envoyer au réseau la totalité des données d’un seul trait, et de faire ensuite le calcul du gradient ainsi que la correction des coefficients. Alors que la seconde consiste à envoyer au réseau, les données par petit groupe d’une taille définit par l’utilisateur. La dernière quant à elle, envoi une donnée à la fois dans le réseau. Nos réseaux utilisent la méthode par mini batch. En effet, celle-ci permet une meilleure convergence par rapport à la stochastic, et nous permet de meilleures performances que la batch, car on ne charge pas entièrement nos données.
On peut associer l’exemple suivant pour schématiser ce gradient. On imagine être un randonneur perdu en montagne, sous un épais brouillard. Une éventuelle possibilité pour descendre de la montagne, est de sentir la pente via ses pieds, et de la suivre dans le sens descendant, pas à pas. On va alors pouvoir rejoindre le bas de la vallée en répétant l’opération. On peut alors appliquer ce même exemple d’un point de vu mathématique :
Si on prend cette fonction comme exemple, 𝑓(𝑥) = 𝑥² – 𝑥 + 1 que l’on souhaite minimiser par rapport à x, la solution est de résoudre l’équation 𝑓′(𝑥) = 0. Ce qui nous donne 𝑓′(𝑥) = 2𝑥 − 1 = 0 ⇒ 𝑥 = 1/2
La première valeur sera prise de façon aléatoire. Le gradient nous permettra de guider les prochaines valeurs en fonction de son coefficient en nous indiquant à la fois la direction et l’importance de la pente. Nous aurons un paramètre (‘eta’ sur le schéma), appelé taux d’apprentissage, qui nous permet de faire varier la vitesse de correction. Celle-ci doit être bien calibrer, car si celle-ci se trouve trop faible la convergence prendra un temps infini, soit au contraire celle-ci se trouve trop grande, et la convergence oscillera sans trouver le minimum. Nous utilisons un taux adaptatif en fonction de l’apprentissage. En effet, nous prenons un taux élevé au début pour améliorer la convergence, puis on la réduit progressivement au fil des itérations pour améliorer la précision. La convergence s’arrêtera soit via un nombre d’itération fixé en avance par l’utilisateur, soit dans notre cas avec l’utilisation ‘d’earlyStopping’, de stopper l’entrainement lorsque nos valeurs n’évoluent plus ou peu durant plusieurs itérations successives.
Le cas précèdent ne comporte qu’un seul paramètre. Nos réseaux de neurones comportant des milliers, voire des millions de paramètres, le schéma suivant représente d’une façon plus fidèle notre problème :
Selon notre type de problème à résoudre, on va devoir utiliser un entrainement spécifique. Voici les 3 principaux types entrainement auquel on peut se confronter :
Apprentissage supervisé : dans ce cas-ci, on va avoir un utilisateur qui va guider la machine, en fournissant une grande quantité d’exemple qui aura été labélisé au préalable. Cette étape de labélisation, indispensable, permet d’associer une entrée à une sortie souhaité. Par exemple, si on souhaite un algorithme capable de reconnaitre un chat, les image d’entrée de chat seront étiqueté ‘chat’, et les autres photos qui ne représente pas de chat seront étiqueté ‘autre’. Ainsi pour une donnée d’entrée, nous auront en sortie soit un ‘chat’, soit un ‘autre’, identifié par notre réseau(classification). Le modèle peut aussi apprendre à généraliser et prédire de futures données (régression), par exemple pour prédire le prix d’une maison que l’on souhaiterait vendre, en renseignant juste sa superficie et ses installations. C’est ce type d’apprentissage que j’utilise pour le POC 2. Nous pouvons donner un exemple très populaire de ce type d’entrainements, tel que la détection d’objet pour les voitures autonomes.
Apprentissage non supervisé : cela concerne des problèmes de clusterisation, procédé auquel on souhaite partitionner et classer des éléments hétérogènes sous forme de sous-groupe qui seraient liés par des caractéristiques communes. C’est la machine elle-même qui va déterminer les traits en communs entres les données, sans intervention externe. Utilisé pour comprendre et explorer des données, dont le nombre de classe est inconnues, ou dont le jeu de données est non étiqueté. Un exemple peut être, que la NASA puisse classer l’ensemble des nouveaux corps célestes qu’elle découvre, en objets astronomiques telle que des étoiles, planètes, astéroïdes, trous noirs, en comparant certaines de leurs données, tel que leur distance, poids, force gravitationnel, etc.
Apprentissage par renforcement : On va utiliser des notions d’agent, d’environnement et de récompense. Un agent va réagir en fonction d’un état de l’environnement, et renvoyer une action en fonction de celui-ci. Un système de récompense permettra quant à lui d’impacter positivement ou négativement l’agent, en fonction d’action prise. Le but du système étant d’amasser le maximum de point possible, il pourra comprendre la différence entre une bonne et une mauvaise action, et donc au fur et à mesure de favoriser les bonnes actions. On essaye de reproduire le mécanisme naturel d’acquisition des connaissances. C’est comme un enfant qui découvre pour la première fois une flamme. Il se brûlera une première fois en la touchant, et ne le refera plus. Extrêmement puissant car ne nécessite pas de large jeu de donnée comme les 2 apprentissages précédents. Ce type d’apprentissage peut se voir dans les intelligences artificielles des nouveaux jeux vidéo par exemple. En effet, devenant de plus en plus complexe, il devient difficile d’en concevoir avec les anciennes méthodes.
Contrairement à ce que l’on pourrait penser, que le deep learning émerge seulement depuis les années 2010, il est en réalité bien plus ancien que cela. En effet, dès le début des années 40 par les chercheurs McCulloch et Pitts, précurseur du neurones formel. Il s’en est suivit les premiers algorithmes d’apprentissage de classifieurs binaires, composé d’un assemblage de plusieurs simples neurones, inventé par Franck Rosenblatt, fin des années 50. C’est ensuite dans les années 80 que le premier réseau de neurones à convolution (CNN) voit le jour par le chercheur français Yann LeCun. Mais c’est seulement depuis quelques années seulement que ce secteur explose, alors qu’il avait été laissé à l’abandon. Cet effet est dû à la convergence de plusieurs paramètres :
Explosion de la quantité de données.
On assiste à une diminution constante du coût de stockage, contrasté par une émergence des techniques de big data qui nous permettent d’amasser d’importante quantités de données, couplé à une grande diversité de données.
Explosion de la puissance de calcul.
En effet, le processeur (CPU) va être optimisé pour des tâches en série de grande diversité, alors que la carte graphique (GPU) va être optimisé pour une grande quantités de tâches qui seront-elles, en parallèle et spécifique à tel ou tel calcul.
Sachant que les CPU du grand public sont composé de 4 à 8 cœurs, et jusqu’à 72 cœurs pour les plus puissant tel que les Intel Xeon Phi Knights Mill, ils se font alors facilement distancé par les GPU qui sont composé de nos jours de l’ordre de 2000 à 5000 cœurs. Le deep learning se résumant à des millions de calculs matricielles, le CPU se fait alors dépasser par la puissance cumulé délivré par les GPU. La rétropropagation du gradient étant un algorithme très lent à résoudre initialement, c’est donc l’avancement des GPU qui ont redonné de l’intérêt pour le deep learning.
Développement des outils et du niveau d’abstraction.
Les algorithmes s’améliorent chaque année en se complexifiant, et sont capable de réaliser de nouvelles choses. Mais le plus fascinant est le développement d’outils, d’API de haut niveau, capable de simplifier la conception d’un réseau en quelque ligne de code seulement, tel que AutoKeras. On abordera d’ailleurs un outils que l’on a nous meme utilisé, nommé Keras. Récemment est apparu des outils tel que Google auto ML. Celui-ci va bien plus loin que nos 2 exemples précédents, en permettant de créer des réseaux en entiers sans écrire une seule ligne de code. En effet, toute la partie technique et complexe du développement d’un modèle est ici automatisée, et déléguée à Google. Cela fonctionne à l’aide une interface de type glisser-coller très intuitive.
Le deep learning va-t-il rendre les autres algorithmes obsolètes ?
On voit que le deep à la cote, on en parle partout, quitte à le mettre un peu partout pour faire joli et vendeur, que l’on est révolutionnaire que l’on joue la carte de l’innovation. Mais faire du deep learning juste pour l’effet de mode est stupide. Pour répondre à la question j’aurais donc tendance à dire que non, le deep learning ne sera pas l’unique façon d’apporter une plus-value à tel ou tel projet et ne va pas plus remplacer le machine learning. C’est un peu comme utiliser un char d’assaut pour venir à bout d’un moustique. Impressionnant, efficace quand ça fonctionne, mais un poil inadapté comme moyen non ? Pourquoi faire compliqué si on peut faire simple ?
Il faut savoir que pour beaucoup d’application, nous n’avons pas besoin de sortir l’artillerie lourde. Des algorithmes plus standard fonctionneront très bien sur ce genre de modèle, et en seront d’autant plus facile à mettre en œuvre. Il faudra avant tout juger et évaluer au préalable le niveau d’effort et de la précision attendu en fonction de notre domaine d’application. Des problèmes différents auront des meilleures méthodes différentes, il faudra donc faire attention d’appliquer la bonne approche sur une situation approprié.
Hum, pas vraiment. Si on doit résumer sur ce qu’est vraiment l’apprentissage de la machine, c’est seulement la résolution de formules mathématiques. Cette fonction va s’équilibrer en fonctions de données d’entrées. Et c’est cette fonction mathématique qui va permettre de nous donner une sortie souhaitée. Cependant, il suffit de modifier partiellement la donnée d’entrée, sur un intervalle auquel la machine n’aura jamais vu auparavant, pour que la machine nous renvoi une sortie absolument fausse. On pourrait appeler l’ensemble de ces techniques par du calcul cognitif, mais pour des raisons marketing, certains pionniers de chez IBM dans les années 60 ont préférés utiliser les termes d’apprentissage de la machine.
L’intelligence artificielle
Cela représente l’ensemble des théories et de techniques mises en œuvre, en vue de réaliser des machines capables de simuler l’intelligence. Et celle-ci ne date effectivement pas d’hier, comme on pourrait y croire. Si on souhaite créer une intelligence artificielle, nous sommes alors dans l’obligation de coder l’ensemble des éventualités et actions qu’elle doit réaliser. Ce qui peut potentiellement être extrêmement long mais surtout se révéler peu efficace dans certaines situations. Cette approche que l’on peut alors considérer comme ‘manuelle’, a bien plus de limites.
Le machine learning
C’est un sous ensemble d’intelligence artificielle. Auparavant, pour apprendre à un ordinateur à effectuer une tâche, on le programmait manuellement. Aujourd’hui, ce même ordinateur peut apprendre par lui-même : il suffit de lui apprendre à reconnaître et à reproduire. En effet, plutôt que de coder l’ensemble des routines avec des jeux d’instructions précises pour réaliser une tache particulière, on va ‘entraîner’ la machine. On va donner de grandes quantités de données à notre algorithme, qui va avoir la capacité d’apprendre à réaliser cette tâche.
Le deep learning
Appelé apprentissage profond, est un sous ensemble du machine learning. Celui-ci reprend les mêmes concepts du machine learning, en les poussant encore plus loin. Le but est de créer une architecture imitant celle du cerveau humain, basés sur des réseaux de neurones artificiels à multiples couches. Le cerveau étant lui-même ‘profond’, dans le sens ou chaque action est le résultat d’une longue chaîne de communications synaptiques avec de nombreuses couches qui communiquent entre elles. Contrairement au machine learning, ces réseaux deviennent de plus en plus performants au fur et à mesure qu’ils reçoivent des données. En effet, ceux-ci pouvant être plus profonds, et donc plus complexes, ils nous permettent d’exploiter bien plus de data et donc d’augmenter significativement les performances.